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Abstract  —  The multi-resolution time-domain (MRTD) 

algor ithm is implemented using Cohen-Daubechies-Feauveau 
(CDF) wavelet bases, resulting in a computationally eff icient 
numerical scheme for electromagnetic field analysis.  The 
application to a simple scattering problem demonstrates the 
advantages of the method versus the conventional finite-
difference time-domain (FDTD) technique. 

I. INTRODUCTION 

The multi -resolution time-domain (MRTD) method has 
been applied recently to a number of electromagnetic field 
problems, such as microwave cavities and structures [1-4], 
as well as scattering by various targets [5].  It was 
demonstrated that the method produces significant savings 
in computational resources vis-à-vis the conventional 
finite-difference time-domain (FDTD) scheme, for a given 
accuracy in the solution. 

The essence of the MRTD algorithm is constituted by 
an expansion of the fields in a wavelet basis, followed by 
a Galerkin-type discretization of Maxwell ’s equations.  
Previous work on this method has concentrated on Haar 
[5], Battle-Lemarie [1,6] or orthonormal Daubechies 
wavelet famili es [2,3].  More recently, we introduced an 
expansion in terms of the Cohen-Daubechies-Feauveau 
(CDF) biorthogonal wavelets [4], in the quest for a 
balance between good numerical dispersion properties and 
algorithmic simplicity. 

The MRTD technique allows the treatment of large 
electromagnetic problems with reduced computer 
resources by addressing two basic issues present in the 
context of FDTD: the numerical dispersion is decreased 
by achieving higher-order approximation of the 
derivatives, and the multi -resolution approach allows for 
denser discretization only in selected regions of the 
computational domain, while keeping low sampling rates 
in the regions of slow field variation.  It should be 
mentioned that both these issues could be treated 
separately within the FDTD family of techniques [7].  
However, significant problems are associated with media 
boundaries (for higher-order schemes) and instabilit y (for 
multi -grid schemes), whenever alternatives to the classic 
Yee algorithm are implemented.  In addition, the MRTD 
algorithm incorporates a sub-cell model for treating a non-

conformal boundary between dielectric media, resulting in 
increased accuracy as compared to a staircase model of 
the same boundary [5]. 

In this paper we formulate the MRTD algorithm using 
CDF biorthogonal wavelets (Sec. II) .  In Sec. III we 
analyze different aspects of the algorithm and compare its 
performance with other existing MRTD schemes.  In Sec. 
IV we apply the algorithm to a simple two-dimensional 
scattering problem and compare both the results and the 
computational resources involved with the traditional 
FDTD scheme.  We summarize in Sec. V with 
conclusions and ideas for future applications. 

II . FORMULATION OF THE CDF-MRTD SCHEME 

A. Homogeneous medium 

In order to keep the presentation simple, we derive the 
CDF biorthogonal MRTD scheme for one-dimensional 
propagation through a homogeneous medium. In the 
following, we consider the expansion of the field 
component Ez in terms of scaling functions and first level 
wavelet functions, in the spatial dimension, and 
rectangular pulse expansion (similar to Yee discretization) 
in the time dimension. 
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Here, we denote by mΦ~ the dual scaling function shifted 
by m units, and by mΨ~  the first level dual wavelet 
function displaced by m units.  For time discretization we 
use rectangular pulses hk(t), where k represents the shift in 
time units.  A similar equation holds for Hy, only the 
supports of the scaling/wavelet functions are displaced 
half a unit relative to Ez.  Throughout this paper, we use 
CDF wavelet famili es [8] for which the wavelet functions 
(and their duals) are symmetric about ½ (e.g., CDF (2,2), 
CDF (2,4) or CDF (2,6)).  In this case, the positions of the 
EΦ and EΨ components are staggered at half of a cell 
interval. 

The Galerkin discretization procedure is effected by 
testing Maxwell ’s equations with the scaling functions, 
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mΦ , and the wavelet functions, mΨ , respectively [1].  
The resulting update equations for the electric field 
scaling and wavelet expansion coeff icients are: 
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The numbers na, nb, nc and nd, are called stencil sizes and 
indicate the number of the non-zero coeff icients in the 
MRTD scheme. A set of similar equations holds for the Hy 
scaling/wavelet coeff icients. The extension to two or three 
dimensions is straightforward. 

B. Inhomogeneous medium 

Since the support of the scaling/wavelet function 
extends over a few cells, it is apparent that coupling 
should occur between the update equations for adjacent 
field coeff icients, at the interface between two media.  
This results in matrix equations that need to be solved in 
order to simultaneously update the field coeff icients next 
to the interface.  Obviously, this approach significantly 
complicates the implementation of the MRTD algorithm. 

However, we can simpli fy the formulation by 
recognizing the fact that we sample the field values at 
discrete spatial location, and using the interpolating 
property of the dual scaling function, i.e.: 
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This property has been utili zed in [2,3] in the context of 
an MRTD formulation based on orthonormal Daubechies 
wavelets. It has been shown that the Daubechies scaling 
functions approximately satisfy the shifted interpolation 
property, which means that we can consider point 
sampling of the field at integer locations, with negligible 

error. However, for the CDF biorthogonal dual scaling 
function with support 2 (like in CDF (2,2), CDF (2,4), 
etc.), the interpolation property holds exactly, without the 
need of shifting the basis functions. This point-wise 
sampling of the field allows a formulation similar to the 
Yee algorithm, in which the material properties are 
sampled at the current point. 

III . ANALYSIS OF THE CDF-MRTD SCHEME 

A. Choice of the wavelet family  

The main objective of the MRTD method is a 
minimization of the computational resources required for 
a given accuracy of the electromagnetic solution.  In this 
context, we would like to reduce the number of 
unknowns, by decreasing the number of discretization 
points per wavelength, while simultaneously keeping the 
numerical dispersion under control. Regularity 
(smoothness) and vanishing moments of the wavelet 
functions are the main requirements in this case, which 
relates to a typical data compression problem [8]. A 
second and distinct issue involves reduction of the total 
number of computations required by the algorithm. For 
this purpose, the scaling/wavelet functions of choice 
should have minimum support. Also, in order to allow for 
a large time step at the stabilit y limit, a large Courant 
number is desired. 

Among wavelet bases previously considered in the 
literature, the Haar family yields a simple algorithm [5], 
which bears close similarities to the Yee FDTD scheme. 
Unfortunately, the Haar wavelets lack smoothness. 

The Battle-Lemarie family of wavelets, which are 
derived from B-spline functions [8], have good regularity 
properties (depending on the order of the spline functions 
used in design), but they have infinite support.  This 
results, theoretically, in an infinite number of MRTD 
terms in each update equation.  Since the Battle-Lemarie 
functions display exponential decay, the higher-order 
MRTD coeff icients also decay fast.  Nevertheless, 
truncating the sequence of MRTD coeff icients [1] to a 
reasonable number (usually 8-12 on each side) poses 
problems in terms of arithmetic precision, by vitiating the 
properties of the wavelet functions imposed by design.  
Also, the relatively large stencil size and the small 
Courant number make the algorithm ineff icient in terms of 
computational complexity. 

Another possible choice, which was already mentioned, 
is that of Daubechies orthogonal wavelets [2,3].  It is 
interesting to point out that, at the level of a scaling 
function field expansion, the MRTD schemes based on 
Daubechies wavelets of order 4, 6, 8 etc. are equivalent 
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with the schemes based on CDF biorthogonal wavelets of 
order (2,2), (2,4), (2,6) etc. (compare the coeff icients 
listed in [3] and [4]). 

B. Stabilit y and dispersion analysis  

The stabilit y criterion for the general MRTD algorithm 
can be found in [6].  In Table I we list the values of the 
Courant number at the stabilit y limit for various MRTD 
schemes, considering one-dimensional propagation. In 
two or three dimensions, these values must be adjusted by 

factors of 21  and 31 , respectively [7].  Notice that 

the low-order CDF (2,2) scheme has a Courant number 
higher than the other schemes, and the difference becomes 
significant when we consider one level of wavelets in the 
expansion. 

A detailed account of the numerical dispersion analysis 
for the CDF-MRTD scheme was given in [4]. It should be 
mentioned that the dispersion performance depends on 
several parameters, including the spatial sampling rate, the 
Courant number, the angle of propagation and the number 
of wavelet levels considered in the expansion.  In general, 
MRTD schemes can operate at sampling rates at least two 
times less than FDTD, when the same dispersion error is 
tolerated.  Also, it can be shown that the dispersion error 
for all MRTD schemes decreases together with the 
Courant number (the further we are from the stabilit y 
limit, the better the performance).  This suggests that, for 
the same Courant number, when both scaling and first 
level wavelet functions are included in the expansion, the 
low-order CDF (2,2) family, which has a large stabilit y 
limit, delivers better dispersion performance than the other 
wavelet bases [4]. 

C. Computational complexity  

The number of f loating-point operations for the update 
equations is related to the stencil sizes, na, nb, nc and nd.  
These numbers are listed in Table II f or several wavelet 
bases.  It is clear from this table that the low-order CDF 

schemes perform one field update step more eff iciently 
than the Battle-Lemarie scheme.  Also, the larger Courant 
number means that we can run a stable code with larger 
time step, thereby reducing the total number of time steps 
required in a simulation. 

IV. NUMERICAL RESULTS 

In this section we apply the CDF (2,2) MRTD scheme 
to a simple two-dimensional scattering problem.  The 
relevant physical and dimensional parameters are shown in 
Fig. 1. The excitation consists of a pulsed plane wave, with 
the incident waveform given by the 4th order Rayleigh 
pulse, centered at 3 GHz. We consider TE (horizontal) 
polarization. The incidence angle is 450 and the 
observation is made in the backscatter direction, in the far 
zone.  We compare the solutions obtained via the classic 
Yee FDTD algorithm with the MRTD solution. For 
FDTD, we use a discretization rate of 80 samples per 
central wavelength (λc) in air and a Courant number of 0.6.  
For the CDF-MRTD, we use a grid with 20 samples per 
central wavelength in air.  We perform an expansion of the 
fields in terms of scaling functions throughout the entire 
computational domain, and use wavelets only in the 
inhomogeneity areas (thus doubling the resolution in these 
regions).  The Courant number is taken 0.3, therefore the 
time step is twice as large as for FDTD. The total grid size 
for the FDTD is 440 x 200 cells, whereas for the MRTD is 
110 x 50 cells.  The number of time steps for FDTD is 
4096, whereas for the MRTD is 2048.  The wavelets cover 
about 12% of the MRTD computational domain, therefore, 
the total number of scaling and wavelet coeff icients is 
about 1.36 times the total number of MRTD cells. In both 
implementations, we use PML absorbing boundary 
conditions [7]. 

The resulting far-zone time-domain waveforms are 
shown in Fig. 2.  The match between the two methods is 
very good.  When we compare the computer resources 

TABLE I 
COURANT NUMBER AT THE STABILITY LIMIT FOR THE 

MRTD ALGORITHM IN ONE DIMENSION 

 
CDF 
(2,2) 

CDF 
(2,4) 

CDF 
(2,6) 

Cubic spline 
Battle-Lemarie 

Scaling only 0.7500 0.6844 0.6585 0.6371 

Scaling + 
One Level 
Wavelet 

0.6046 0.4831 0.4221 0.2625 

 
 

TABLE II  
STENCIL SIZES FOR DIFFERENT MRTD SCHEMES 

 
CDF 
(2,2) 

CDF 
(2,4) 

CDF 
(2,6) 

Cubic spline 
Battle-Lemarie 

coefficients 
truncated at 10

-3
 

na 3 5 7 9 

nb 3 5 7 9 

nc 2 3 4 8 

nd 3 6 9 8 
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required by both implementations, we expect MRTD to 
utili ze about 12 times less memory than FDTD, and to run 
about 6 times faster.  However, our numerical experiments 
show that the increase in computational speed is more 
significant (typically, about 11 times).  We attribute this to 
the fact that the MRTD update equations are more 
eff iciently processed on the particular type of machine 
(Pentium III) that we used in our simulations. 

V. CONCLUSIONS 

In this paper we demonstrated the implementation of an 
electromagnetic scattering problem utili zing the CDF-
MRTD scheme.  We compared the results with those 

obtained by the traditional Yee FDTD algorithm, 
emphasizing the reduction in computational resources in 
the former case.  There is no increase in algorithmic 
complexity for the CDF-MRTD method when applied to 
inhomogeneous media, due to the interpolating property 
of the dual scaling function.  We envision the application 
of this type of schemes to more complicated 
configurations, especially for large electromagnetic 
problems.  Moreover, it is easy to notice that the resource 
savings of MRTD as compared to FDTD are even greater 
in three dimensions.  One particular application that may 
be of interest in the context of CDF-MRTD 
implementation is scattering by photonic band-gap 
structures. 
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Fig. 1. The physical configuration of the scattering problem. It 
consists of two rectangular dielectric infinite cylinders, with 
εr=4, placed in free-space. 
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 Fig. 2. Time-domain scattered field for the configuration in 
Fig. 1.  The waveforms obtained with FDTD and CDF (2,2)-
MRTD are one on top of the other. 
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