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Abstract — The multi-resolution time-domain (MRTD)
algorithm is implemented using Cohen-Daubechies-Feauveau
(CDF) wavelet bases, resulting in a computationally efficient
numerical scheme for eledromagnetic field analysis. The
application to a simple scattering problem demonstrates the
advantages of the method versus the mnventional finite-
differencetime-domain (FDTD) technique.

|. INTRODUCTION

The multi-resolution time-domain (MRTD) method tes
been applied recantly to a number of eledromagnetic field
problems, such as microwave cavities and structures [1-4],
as well as <atering by \erious targets [5]. It was
demonstrated that the method goduces sgnificant savings
in computational resources vis-a-vis the @nventiond
finite-diff erence time-domain (FDTD) scheme, for agiven
acaragy in the solution.

The esence of the MRTD agorithm is constituted by
an expansion d the fields in a wavelet basis, followed by
a Galerkin-type discretization o Maxwell’s equations.
Previous work on this method tes concentrated on Haa
[5], Battle-Lemarie [1,6] or orthonama Daubecies
wavelet families [2,3]. More recantly, we introduced an
expansion in terms of the Cohen-Daubedchies-Feauveau
(CDF) biorthogoral wavelets [4], in the quest for a
balance between good nunericd dispersion properties and
algorithmic simplicity.

The MRTD tedchnique dlows the treagment of large
eledromagnetic problems with reduced computer
resources by addressng two basic isales present in the
context of FDTD: the numericd dispersion is deaeased
by adieving higher-order approximation o the
derivatives, and the multi-resolution approach alows for
denser discretization orly in seleded regions of the
computational domain, while keeping low sampling rates
in the regions of dow field variation. It shoud be
mentioned that both these isues could be treded
separately within the FDTD family of techniques [7].
However, significant problems are aciated with media
boundiries (for higher-order schemes) and instahility (for
multi-grid schemes), whenever alternatives to the dassc
Yee dgorithm are implemented. In addition, the MRTD
algorithm incorporates a sub-cdl model for treginganon

conformal boundry between deledric media, resultingin
incressed acarracy as compared to a staircase model of
the same boundiry [5].

In this paper we formulate the MRTD agorithm using
CDF biorthogord wavelets (Sec II). In Sec Il we
analyze different aspeds of the dgorithm and compare its
performance with other existing MRTD schemes. In Sec
IV we gply the dgorithm to a simple two-dimensiond
scatering problem and compare both the results and the
computational resources involved with the traditional
FDTD scheme. We summarize in Sec V with
conclusions and ideas for future gplications.

Il. FORMULATION OF THE CDF-MRTD SCHEME

A. Homogeneous medium

In order to keep the presentation ssimple, we derive the
CDF biorthogord MRTD scheme for one-dimensiond
propagation through a homogeneous medium. In the
following, we nsider the epanson d the field
comporent E, in terms of scding functions and first level
wavelet functions, in the gspatial dimension, and
redanguar pulse expansion (similar to Y eediscretization)
in the time dimension.

e x0)= 3 [0S0+ 5800 ©
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Here, we dencte by dim the dual scéing function shifted
by m units, and by W, the first level dua wavelet
function dsplacal by m units. For time discretization we
use redanguar pulses h,(t), where k represents the shift in
time units. A similar equation hdds for H, only the
suppats of the scding/wavelet functions are displaced
half a unit relative to E,. Throughou this paper, we use
CDF wavelet families [8] for which the wavelet functions
(and their duals) are symmetric éou %2 (e.g., CDF (2,2),
CDF (2,4) or CDF (2,6)). In this case, the positions of the
E® and E¥ comporents are staggered at half of a cdl

interval.
The Galerkin dscretizaion procedure is effeded by
testing Maxwell’s equations with the scding functions,

0-7803-6540-2/01/$10.00 (C) 2001 IEEE



@, and the wavelet functions, W, respedively [1].
The resulting updite ejuations for the dedric field
scding and wavelet expansion coefficients are:
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The numbersn,, n,, n_and n, are caled stencil sizesand
indicate the number of the nonzero coefficients in the
MRTD scheme. A set of similar equations holds for the H,
scding/wavelet coefficients. The extension to two or three
dimensionsis graightforward.

B. Inhamogeneous medium

Since the suppat of the scding/wavelet function
extends over a few cdls, it is apparent that couging
shoud occur between the update equations for adjacent
field coefficients, at the interface between two media
This results in matrix equations that need to be solved in
order to simultaneoudly updite the field coefficients next
to the interfface Obvioudly, this approach significantly
complicates the implementation d the MRTD algorithm.

However, we can simplify the formulation by
recmgnizing the fad that we sample the field values at
discrete gpatial locaion, and wing the interpolating
property of the dual scdingfunction,i.e.:

() =8, 1y @)

m-m

This property has been utili zed in [2,3] in the cntext of
an MRTD formulation based on athonamal Daubechies
wavelets. It has been shown that the Daubechies sding
functions approximately satisfy the shifted interpolation
property, which means that we can consider point
sampling d the field at integer locations, with negligible

error. However, for the CDF biorthogoral dual scding
function with suppat 2 (like in CDF (2,2), CDF (2,4),
etc.), the interpalation property hdds exactly, withou the
need o shifting the basis functions. This point-wise
sampling o the field allows a formulation similar to the
Yee &gorithm, in which the material properties are
sampled at the aurrent point.

1. ANALYSISOF THE CDF-MRTD ScHEME

A. Choice of the wavdet family

The main obedive of the MRTD method is a
minimization d the omputational resources required for
a given acarragy of the dedromagnetic solution. In this
context, we would like to reduce the number of
unknawvns, by deaeasing the number of discretization
points per wavelength, while simultaneously keeping the
numericd  dispersion undr control. Regularity
(smoothnesg and vanishing moments of the wavelet
functions are the main requirements in this case, which
relates to a typicd data cmpresson poblem [8]. A
seoond and dstinct isaue invalves reduction d the total
number of computations required by the dgorithm. For
this purpose, the scding/wavelet functions of choice
shoud have minimum suppat. Also, in order to allow for
a large time step at the stability limit, a large Courant
number is desired.

Among wavelet bases previously considered in the
literature, the Haa family yields a simple dgorithm [5],
which beas close similarities to the Yee FDTD scheme.
Unfortunately, the Haa wavelets ladk smoaothness

The Battle-Lemarie family of wavelets, which are
derived from B-spline functions [8], have goodregularity
properties (depending onthe order of the spline functions
used in design), but they have infinite suppat. This
results, theoreticdly, in an infinite number of MRTD
terms in eat updite equation. Since the Battle-Lemarie
functions display exporential decg, the higher-order
MRTD coefficients aso decy fast.  Nevertheless
truncating the sequence of MRTD coefficients [1] to a
ressonable number (usually 8-12 on ead side) pases
problems in terms of arithmetic predsion, by vitiating the
properties of the wavelet functions imposed by design.
Also, the relatively large stencil size ad the small
Courant number make the dgorithm inefficient in terms of
computational complexity.

Another posdble choice, which was arealy mentioned,
is that of Daubechies orthogoral wavelets [2,3]. It is
interesting to pant out that, at the level of a scding
function field expansion, the MRTD schemes based on
Daubedies wavelets of order 4, 6, 8 etc. are euivalent
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with the schemes based on CDF biorthogoral wavelets of
order (2,2), (2,4), (2,6) etc. (compare the mefficients
listed in [3] and [4]).

TABLE |
COURANT NUMBER AT THE STABILITY LIMIT FOR THE

schemes perform one field updite step more dficiently
than the Battle-L emarie scheme. Also, the larger Courant
number means that we can run a stable mde with larger
time step, thereby reducing the total number of time steps
required in asimulation.

TABLEII
MRTD ALGORITHM IN ONE DIMENSION
STENCIL SIZES FOR DIFFERENT MRTD SCHEMES
CDF CDF CDF Cubic Spllne Cubic Sp“ne
(2,2) 2.4) (2,6) | Battle-Lemarie CDF CDF CDF Battle-Lemarie
(2,2) (2,9) (2,6) coefficients
-3
Scalingonly | 0.7500 | 0.6844 | 0.6585 0.6371 truncated at 10
Scaling + N, 3 5 ! 9
One Level 0.6046 | 0.4831 | 0.4221 0.2625 3 9
Wavelet Ny, 5 7
N, 2 3 4 8
B. Sahility and dspersion andysis N, 3 5 9 8

The stability criterion for the general MRTD algorithm
can be foundin [6]. In Table | we list the values of the
Courant number at the stability limit for various MRTD
schemes, considering ore-dimensional propagation. In
two or threedimensions, these values must be ajusted by

fadors of 1/\/5 and 1/\/5 respedively [7]. Notice that

the low-order CDF (2,2) scheme has a Courant number
higher than the other schemes, and the diff erence becomes
significant when we consider one level of wavelets in the
expansion.

A detailed acourt of the numericd dispersion analysis
for the CDF-MRTD scheme was given in [4]. It shoud be
mentioned that the dispersion performance depends on
several parameters, including the spatial sampling rate, the
Courant number, the axgle of propagation and the number
of wavelet levels considered in the expansion. In general,
MRTD schemes can operate & sampling rates at least two
times lessthan FDTD, when the same dispersion error is
tolerated. Also, it can be shown that the dispersion error
for al MRTD schemes deaeases together with the
Courant number (the further we ae from the stability
limit, the better the performance). This suggests that, for
the same Courant number, when bah scding and first
level wavelet functions are included in the expansion, the
low-order CDF (2,2) family, which has a large stability
limit, delivers better dispersion performance than the other
wavelet bases [4].

C. Computationd complexty

The number of floating-point operations for the update
equations is related to the stencil sizes, n, n, n, and n,.
These numbers are listed in Table Il for several wavelet
bases. It is clea from this table that the low-order CDF

IV. NUMERICAL RESULTS

In this dion we gply the CDF (2,2) MRTD scheme
to a simple two-dimensional scatering problem. The
relevant physicad and dmensional parameters are shown in
Fig. 1. The excitation consists of a pulsed plane wave, with
the incident waveform given by the 4™ order Rayleigh
pulse, centered at 3 GHz. We mnsider TE (horizontal)
polarization. The incidence age is 45 and the
observation is made in the badkscater diredion, in the far
zone. We compare the solutions obtained via the dassc
Yee FDTD algorithm with the MRTD solution. For
FDTD, we use a discretization rate of 80 samples per
central wavelength (A.) in air and a Courant number of 0.6.
For the CDF-MRTD, we use agrid with 20 samples per
central wavelength in air. We perform an expansion of the
fields in terms of scding functions throughout the entire
computational domain, and use wavelets only in the
inhomogeneity areas (thus doubling the resolution in these
regions). The Courant number is taken 0.3, therefore the
time step istwice & large & for FDTD. The total grid size
for the FDTD is440x 200cdls, whereas for the MRTD is
110 x 50 cdls. The number of time steps for FDTD is
4096 whereas for the MRTD is 2048 The wavelets cover
about 12% of the MRTD computational domain, therefore,
the total number of scding and wavelet coefficients is
about 1.36 times the total number of MRTD cdls. In both
implementations, we use PML absorbing boundary
conditions [7].

The resulting far-zone time-domain waveforms are
shown in Fig. 2. The match between the two methods is
very good When we compare the @mmputer resources
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Fig. 1. The physicd configuration o the scatering problem. It
consists of two redangular dieledric infinite g/linders, with
&=4, placd in freespace

required by both implementations, we exped MRTD to
utilize dout 12 times lessmemory than FDTD, and to run
about 6 times faster. However, our numericd experiments
show that the increase in computational speed is more
significant (typicdly, about 11 times). We dtribute this to
the fad that the MRTD update ejuations are more
efficiently processed on the particular type of machine
(Pentium 111) that we used in our simulations.
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Fig. 2. Time-domain scatered field for the cnfiguration in

Fig. 1. The waveforms obtained with FDTD and CDF (2,2)-
MRTD are one ontop d the other.

V. CONCLUSIONS

In this paper we demonstrated the implementation d an
eledromagnetic scatering poblem utilizing the CDF-
MRTD scheme. We mpared the results with those

obtained by the traditionad Yee FDTD algorithm,
emphasizing the reduction in computational resources in
the former case. There is no increase in algorithmic
complexity for the CDF-MRTD method when applied to
inhamogeneous media, due to the interpolating property
of the dual scding function. We envision the gplicaion
of this type of schemes to more @mplicaed
configurations, espedaly for large dedromagnetic
problems. Moreover, it is easy to ndicethat the resource
savings of MRTD as compared to FDTD are even greder
in three dimensions. One particular applicaion that may
be of interest in the onext of CDF-MRTD
implementation is <dtering by phaonic band-gap
structures.
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